The Solenoid and Holomorphic Motions for Hénon Maps

نویسنده

  • PHILIP P. MUMMERT
چکیده

The McMullen-Sullivan holomorphic motion for topologically conjugate, complex polynomials with connected Julia set follows level sets of the Böttcher coordinate. The Buzzard-Verma holomorphic motion for hyperbolic, unstably connected, polynomial diffeomorphisms of C follows level sets of the Bedford-Smillie solenoid map. It follows that this solenoid map is a conjugacy for those Hénon maps that are perturbations of (one-dimensional) hyperbolic maps with connected Julia set.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Λ-lemma for Families of Riemann Surfaces and the Critical Loci of Complex Hénon Maps

We prove a version of the classical λ-lemma for holomorphic families of Riemann surfaces. We then use it to show that critical loci for complex Hénon maps that are small perturbations of quadratic polynomials with Cantor Julia sets are all quasiconformally equivalent.

متن کامل

Douady-Earle section, holomorphic motions, and some applications

We review several applications of Douady-Earle section to holomorphic motions over infinite dimensional parameter spaces. Using DouadyEarle section we study group-equivariant extensions of holomorphic motions. We also discuss the relationship between extending holomorphic motions and lifting holomorphic maps. Finally, we discuss several applications of holomorphic motions in complex analysis.

متن کامل

Hyperbolic Automorphisms and Holomorphic Motions in C 2

Holomorphic motions have been an important tool in the study of complex dynamics in one variable. In this paper we provide one approach to using holomorphic motions in the study of complex dynamics in two variables. To introduce these ideas more fully, let 1r be the disk of radius r and center 0 in the plane, let P1 be the Riemann sphere, and recall that a holomorphic motion of a set E ⊂ P1 is ...

متن کامل

Liftings of Holomorphic Maps into Teichmüller Spaces

We study liftings of holomorphic maps into some Teichmüller spaces. We also study the relationship between universal holomorphic motions and holomorphic lifts into Teichmüller spaces of closed sets in the Riemann sphere.

متن کامل

Classification of Invariant Fatou Components for Dissipative Hénon Maps

Fatou components for rational functions in the Riemann sphere are very well understood and play an important role in our understanding of one-dimensional dynamics. In higher dimensions the situation is less well understood. In this work we give a classification of invariant Fatou components for moderately dissipative Hénon maps. Most of our methods apply in a much more general setting. In parti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006